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J .  Phys.: Condens. Matter 2 (1990) 897-909. Printed in the UK 

Systems with static and dynamic disorder: generalised 
coherent potential approximation 

Abhijit Mookerjee 
Department of Physics, Indian Institute of Technology, Kanpur 208016, India 

Received 28 March 1989 

Abstract. Using the ideasof the augmentedspace formalism introducedsome time ago by this 
author, a generalisation of the coherent potential approximation and its cluster extensions is 
developed for systems that have both inherent static disorder as well as potentials that 
fluctuate randomly with time. The formalism reduces to standard results in the adiabatic 
limit. 

1. Introduction 

The standard method of dealing with electronic systems in contact with a thermal 
(phonon) bath is to assume that the timescales associated with the electronic motion 
(z,, where z, is the timescale associated with the system of electrons coupled to the 
random bath) and the bath (tb) are very different. If z, z b ,  then we may decouple the 
electronic and phonon degrees of freedom. This is the adiabatic approximation. We 
assume that for t < z, the phonon degrees of freedom are frozen and the electrons 
essentially move in a potential that deviates from their perfect values in the absence of 
the bath (Born-Oppenheimer). However, there are situations where this breaks down 
and z, = tb. Certain two-level systems near T = 0 and near localised, sluggish con- 
duction electrons in the so-called Mooij alloys are some examples of this. 

The aim of this paper is to develop a formalism that would deal, in a unified manner, 
with situations where there is inherent static (quenched) disorder (as in random alloys, 
distorted lattices and networks) as well as dynamic disorder, because of coupling to a 
noise bath. In addition, the adiabatic approximation may not hold. Our approach will 
be based on the augmented space technique, which was proposed for static disorder 
problems by this author (Mookerjee 1973). Recently, Paquet and Leroux-Hugon (1984) 
have introduced a dynamic coherent potential approximation (CPA) based on the aug- 
mented space technique referred to above and have applied it to interesting examples 
of two-level systems. 

The aim of this work is to improve upon these earlier ideas in the following specific 
way: in the earlier treatments the dynamic disorder was treated within perturbation 
theories, while the static disorder was treated within more sophisticated mean-field 
approaches like the CPA or its cluster versions. The assumption made, though not 
explicitly stated, was that the effects of static and dynamic disorder are uncorrelated. 
This latter assumption is shown to be invalid in specific examples. We shall treat both 
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the static and dynamic disorders on the same footing on the augmented space, combining 
the work of Paquet and Leroux-Hugon (1984) with our earlier approach for static 
disorder. 

2. The augmented space formalism 

2.1. Static disorder 

The augmented space formalism was introduced by this author (Mookerjee 1973) to 
deal with the problem of averaging over static disorder configurations. The formalism 
puts configuration averaging on the same footing as quantum-mechanical averaging, by 
augmenting the Hilbert space spanned by the wavefunctions by a disorder or con- 
figuration space spanned by the different configuration states. The algebra of the method 
has been discussed in detail earlier (Gray and Kaplan 1976, Kaplan and Gray 1982). 
Here we shall pick up a typical example to bring out the connection with our subsequent 
treatment of dynamic disorder. 

Suppose that the Hamiltonian describing a system is characterised by a set of inde- 
pendent random variables {xi}. The probability density of {xi} is assumed to have finite 
moments to all orders so that we may write 

p ( x j )  = (-1/j~)Im(y{J[(x~ + i0)z - ~ ( ' ) ] - ' l y k )  (1) 

where M(')  is an operator on a space @(i) of rank N ,  spanned by the N possible con- 
figurations of xi. Even if xi has continuous values, a countable basis l y h )  may still be 
chosen, but the rank of a(;) now becomes infinite. 

A suitable choice of the basis is one that makes M(') tridiagonal. This tridiagonal 
representation may be immediately obtained by looking at the continued-fraction expan- 
sion for p ( x i ) :  

1 1 
p ( x i )  = --Im 

n xi  - a l  - b: 
xi - a2 - bi 

Sincep(xi) 2 Oand has finite moments toallorders, it always has aconvergent continued- 
fraction expansion with real coefficients {a,, b,}. The representation of M(')  has a, down 
the diagonal and b, down the off-diagonal positions. 

The formalism now states that the configuration average over any function of H ( { x j } ) ,  
9, may be written 

where 8 is the same functional operator of { M ( ; ) }  as 9 was a function of { x i }  and 
I f )  = rI@ I yb) is the configuration ground state. The configuration averaging has been 
reduced to the problem of the ground-state matrix element in the augmented space 
Y = X x @ where H E X and @ = rI@'cp (i), an idea familiar in quantum-mechanical 
averaging. 
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Figure 1. Part of the delinked graph for the single-site CPA on a disorder problem both static 
and dynamic. 

Since the basis in @ ('1 is countable, we shall define the cardinality of I y i )  to be the 
integer n 

card/ y L)  = n card{ 1 y ;  C3 y ;  )} = n + m. (4) 

We shall introduce the notation I f f . , )  to denote any member of the set 1 y t ,  C3 y t ,  @ 
. . . @ y f  C3. . . )with card = q. 

Suppose we have a Hamiltonian H E X of the form 

H = E,P, + c. c. V, ,T ,  ( 5 )  

where the basis in X is a suitably chosen orthogonal, site-labelled set It-,) which spans X .  
Theaugmentedspacetheorem then states that, if the set of diagonal terms{ &,}is identified 
with the random set { x , } ,  then 

To obtain the self-energy in the CPA, for example, we shall follow the graphical 
approach of Haydock (1972, 1980). The method is equivalent to and an alternative of 
the t-matrix approach. Although the latter is the more familiar, the former has the 
advantage of making the structure of the approximating terms more transparent. It was 
shown earlier (Bishop and Mookerjee 1974) that calculating the Green function on the 
graph f o r a  in the augmented space, which is modified in such a way that all closed paths 
that do not lie entirely in a subspace spanned by a basis of the same cardinality are 
delinked, leads exactly to the single-site CPA. Figure 1 shows a part of the delinked graph 
for 8. The self-energy arises because of the decorations of the original lattice in X 
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by augmented space decorations. It is clear that the delinking leads to a self-energy 
completely diagonal in the space X .  Let us examine this graph: 

C ( z )  = a ,  + b:Ql(z ) .  

Q1(z) is the diagonal element of the Green function of a Hamiltonian whose graph is 
identical to that for H except that the decoration at the site r, is C 2 ( z )  + u2 instead of 
C ( z ) .  Thus 

Q , ( z )  = ( r ,  I [zZ - H ,  - C + P,(C - X 2  - a2)P , ] - l  ir ,)  

- F ( z )  - 
1 + (2 - a , ) F ( z )  - C * F ( Z ) '  

Here H ,  is the non-random part of the original Hamiltonian, F ( z )  = gL,(z - C) where 
g = (ZZ - H J 1 .  

Again, if we examine the next stage of the graph: 

2 2 ( 2 )  = b : Q 2 < ~ >  
where again Q * ( z )  is the diagonal part of the Green function of a Hamiltonian whose 
graph is identical to that for Hexcept that the decoration at r, is Cg(2) + a3. The recursive 
structure is now quite apparent and we may immediately write down the expression 

(7) 
b: C(2)  = a1 + 

[ W ( Z ) l  - (2  + a21 - b: 
[1/F(z)l - (2 + as) - 3 

. . .  
This expression is the same as that of Sumi (1977) and the static limit structure of the 

self-energy of Paquet and Leroux-Hugon (1984). Contrary to the latter's comment, the 
graphical technique is not cumbersome; on the contrary, it brings out the recursive 
structure of the self-energies, which is the basis of the continued-fraction form. For the 
case when p ( q )  is a semi-elliptic distribution with W ,  a, = 0 and 6 ,  = W/2 for all n ,  and 
we immediately obtain from (7) the well known result C = ( W 2 / 4 ) F ( z ) .  

2.2. Dynamic disorder 

Let us now discuss the case of an electric system described by a non-random Hamiltonian 
Ho in contact with a stochastic bath described by a potential {Axi(t)},  where x i ( t )  takes a 
continuous set of values (say, the position of the potential centre): 

H = Ho + c; Ax;(t)P; H E X .  

We shall limit ourselves to Markovian noise. The Markov processes are the simplest 
possible processes that account for correlation time for the noise. The evolution prob- 
ability Ip")) of a stationary Markov process is governed by the Chapman-Kolmogorov 
equation 

@ / a t  - E(')) lp(i))  = 0. (8) 
The Fokker-Planck operator E(') has a representation 

in the basis of continuous states {x} of xi, where u ( x )  is the local velocity and d ( x )  the 
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local diffusion coefficient. For the Ehrenfest process u(x )  = -x/zu and d(x)  = 2/tu,  
where zo has the interpretation of being the lifetime in the ground state. The stationary 
solution of (8) in this representation is 

The eigenvalues of E(') are - n / z o  and the corresponding eigenfunctions l y ; )  have a 
representation 

y ~ ( x )  = (2"n I ~t-1 - l / ' ~ , ( x / 2 )  exp(-x2/2). 
Note that p $ ) ( x )  = y h ( x )  and any innerproduct in this representation is 

p $ ) ( x )  = (2n)-lI2 exp(-x2/2). 

(Y(n')lAliY)) = j j d x d y  rL(x)*(l/p$))A(x,y)y:,(x). 

The configuration space for (x , )  is then iD = II@q(') spanned by 

Of interest is the evolution operator averaged over the different histories of the 
process. This may be expressed in terms of a conditional evolution operator U(t )  whose 
representation in the above basis is U({x} ,  o/}, t )  and gives the evolution of a history with 
a starting state { y }  at t = 0 and a final state { x }  at t 

l y $ )  €9 y g  €9. . . y; !  € 9 .  * .). 

(U( t ) )  = j j d{x} d{Y} np*(x,)[l/p*(x,)lU({x}, Cv}, t>p*(y,> 

that is 
( U ( t ) )  = ( f l  Ulf)  

I f )  = n@lyb). (9) 

where 

The similarity with the static disorder case is now evident. We may go further and deduce 
the differential equation for U(t ) .  Two types of evolutions are involved in this system: 
quantum-mechanical evolution described by the Schrodinger equation and its Ham- 
iltonian and a Markovian evolution of the stochastic part described by the Chapman- 
Kolmogorov equation and the Fokker-Planck operator: 

U(t  + st)  = U(t )  + (l/ifi)HU(t)& + F(')U(t)8t 
that is, 

ifi - U = H + ifiF(1) U = H U .  (10) at a (  1 
Here H is an operator in the augmented space X 8 iD .  The averaged Green operator is 
the Laplace transform of the evolution operator 

We may express # in the eigenbasis of the Fokker-Planck operators. If {x,(t)} are taken 
as the positions, then using 

( G ( z ) )  = (ft(z1- HI I f ) .  (11a) 

# = H,, € 9 1  + 

M(' )  = z €9 z €9 . , , M(' )  €9 , , . 

(AM( ' )  8 ~ '  + ifiE(')) 
with 

The representation of M(' )  is a tridiagonal matrix with a, = 0 and b, = n ,  while 
F(i) = Z € 9 Z @ .  . . IF('), , , , 

are 
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diagonal with eigenvalues -n /zo  down the diagonal positions. The analogy with the 
static case is now complete. The following comments may be made. 

(i) The probability distribution p ( x )  which corresponds to the operator M ( ' )  via a 
relation like (1) is the Gaussian (27c-I exp(-x2/2). This follows directly from the 
continued-fraction expansion of the Gaussian and (2). 

(ii) zo has the interpretation of the lifetime of a configuration in the ground state. 
The static limit takes zo+ x. or E(') = 0. The net effect is then to introduce a diagonal 
term with a Gaussian distribution. This is the basis of the Gaussian model of Chen et af 
(1972) in the adiabatic approximation. 

(iii) The term 2 E(') adds a diagonal term and since ( f;.Y 1 IF I f ; , s )  = -q/ro the self- 
energy has a representation that is dependent on the cardinality of the basis. The same 
is true of the Green functions. 

(iv) In analogy with the static disorder case with binary distributions, when we 
described excitations above the ground state in terms of pseudo-fermions (Mookerjee 
1975), the continuous distribution case may have its excitations above the ground state 
in terms of pseudo-bosons. The energy associated with such a pseudo-boson for the 
Ehrenfest process is h o  = h/ to .  Each time an excitation is created in the configuration 
space, the electron exchanges this much energy with the stochastic bath. The electron 
system itself (separated from the stochastic bath) is an open system in which energy is not 
conserved. The energy exchange then appears as an imaginary part of the Hamiltonian of 
this open system. When we model a phonon bath by an Ehrenfest bath, these pseudo- 
bosons are the actual phonon excitations of the lattice and hw is a quantum of energy 
associated with these excitations. 

We have achieved a complete structural analogy between the theory for static and 
dynamic disorder. It is therefore a natural extension to describe the CPA for the dynamic 
disorder case in terms of the same delinking approximation in augmented space, as for 
the static case. 

Figure 2 shows a part of the delinked graph in augmented space corresponding to 
the CPA. The same argument may now be used to determine the diagonal self-energies. 
The only difference is the comment (iii), which states that now the self-energies and 
Green functions are labelled by the cardinality of the basis functions. This is made quite 
apparent in the graph of figure 2, from the fact that the bubble decorations at the sites 
are themselves cardinality-dependent. The generalisation of (7) is then 

with C ( z )  = CO and F&z) = gii(z - Z9). This result is identical to the result obtained by 
Paquet and Leroux-Hugon (1984) via a t-matrix approach, with the slight notational 
change: their X9 - ihw being our 2,. We have retained our notation as it is consistent 
with our earlier work on static disorder. 

or w -+ 0, (12) reduces to ( 7 )  with a Gaussian distribution, as it 
should. Our dynamical CPA appears as a natural generalisation of the static disorder CPA 
and reduces to it in this limit. 

If we take z -+ 
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Figure 2. (a) Part of the check-board pattern graph for the ZCPA. Each closed loop is of length 
8 and contains states of cardinality q and q + 1. ( b )  Tree structure after recursion is applied. 

If the excitations of the stochastic bath are produced thermally, at a particular 
temperature T ,  the excitation frequency density is given by the boson distribution 
function 

~ ( o )  = - I ) - ' .  

2.3. The electron-bath coupled system 

As mentioned before, we may begin to describe the excitations of the ground state of 
the Ehrenfest bath in terms of bosons. The mathematics is very similar to that of Schultz 
and Shapiro (1972) and Mookerjee (1975), with boson statistics instead of fermion. If 
we define 

bt 1 .  . . y :  . . . ) = (n ,  + l)"* I .  . . y i T + , )  

b ,  1 .  . . y ;  . . . ) = nf''1. . . y f - l  . . . )  

then it is easy to see that 

F(') = -iziw bjb ,  = A(b)j + b f ) .  (13) 

(14) 

In this second quantised form the augmented space Hamiltonian becomes 

fi = x E , a j a ,  + 2 V p f a ,  - izio b,"b, + A2 (b," + b,)a,a, .  

Note that the above Hamiltonian closely resembles that of a coupled electron- 
phonon system. The following observation is pertinent: in deriving the Hamiltonian, it 
was taken to be the Hamiltonian of the electrons alone. This is an open system and the 
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stochastic bath could exchange energy with it. Energy is not conserved and an imaginary 
part appeared in the electron Hamiltonian proportional to the energy exchange. If we 
want to compare this with the total Hamiltonian of the closed electron-phonon system, 
then we must replace the imaginary part with a real part ChwbTbi representing the 
energy of the phonon excitations. 

Inspection of (14) immediately shows that the model neglects the correlation between 
phonon amplitudes on different sites. This model is appropriate either when T 9 TD and 
phonons of all wavelengths are excited, so that the phonon correlation function is 
reasonably short-ranged, or in very dirty systems where the low-lying phonon modes 
are localised and the local phonon picture is not a bad one. We shall, in the application 
we have in mind, satisfy both these conditions. 

At a temperature T then, the self-energy arising out of the coupling of the electron 
with the stochastic bath is (from (12)): 

C(Z)  = dm D(w)CO(Z, W )  i 
[1/F,(Z, w)1 + .  . 

Here we have generalised (12) a little by making the coupling constant A depend on the 
frequency w as well. 

Following the arguments of Paquet and Leroux-Hugon (1984), for any z there exists 
an integer p such that, for q > p ,  lCq(z ,  o)l s 6 (where 6 is a preordained number, 
however small). This makes the recursive relations (12) and (15) tractable in practice. 
If we assume that p = 1, that is C,, Fq+ = 0 for all q 2 1, then for T 9 TD we have 

CO(Z ,  U )  = I~(w> lgm(z  + ihw) and dx  k(x)goo(z  + x )  (16) 

where 

k ( x )  = do{/A(o)//02}[6(x - h ~ )  + 6(x + no)]. i 
This is identical to the result of Girvin and Jonsson (1980) using a simple perturbative 
approach. The dynamic CPA is then a generalised perturbative method, in which a whole 
series of scattering diagrams are summed to all orders. This view of the CPA already 
exists in the case of static disorder (Mookerjee 1975). 

If we assume that the lifetime of the stochastic bath in its ground-state configuration, 
zo, is much longer than the lifetimes associated with the electronic motion, we may take 
the energy transfer ho = 0. This then corresponds to the static or adiabatic limit. This 
gives 

X&) = KT1gOo(2)  where (17) 

This is the standard adiabatic result. 

2.4 .  The cluster CPA generalisation 

The augmented space approach provided a tractable formulation of cluster CPA (CCPA) 
in the static disorder case. The generalisation provided herglotz Green functions at 
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all energies and degrees of disorder (Kumar et a1 1982, Mookerjee et a1 1983, 1985, 
Mookerjee and Yussouff 1984). Applications have been made to the density of states 
and conductivities in cases where there is strong scattering and the simple single-site CPA 
does not yield accurate results, For dynamic disorder, too, we may identify situations 
when it is necessary to go beyond the simple CPA described in 0 2.3. The simplest situation 
occurs when it is necessary to take into account correlations between phonon amplitudes 
of adjacent sites. Cluster CPA that take these correlations into account are desirable if 
we wish to make quantitatively accurate calculations. Even in very dirty systems, the 
localised phonon modes are never localised on a site, but have finite extent. Gen- 
eralisation beyond the single-site CPA is also desirable when the electron-phonon coup- 
ling is large. 

In view of the above, let us add to the Hamiltonian a term of the type 22 D,bfb,  
with D,, = -2 D,,, where i and j belong to a particular cluster of neighbouring sites. If 
we follow a Tsukada-type cluster partitioning of the underlying lattice, the self-energy 
is cluster-diagonal. As before, in the CCPA the averaged Green functions F(z )  and the 
self-energies are diagonal in the cardinality-labelled partition of the configuration space. 
We could describe the CCPA in analogy with the static case: the closed paths that involve 
sites within and without the cluster and which do not lie entirely in a subspace spanned 
by states of the same cardinality are delinked. The delinked graphs obtained from this 
prescription are rather formidable and their symmetries are not immediately apparent. 
This is in contrast to the CPA graph whose tree-like structure allowed us with a little 
difficulty to obtain continued-fraction-like recurrence expressions. Figure 2(a) shows 
the topological structure of a part of this graph for the 2CPA. For the static case, it was 
shown that the t-matrix and the graphical approaches are equivalent. A very similar 
proof can be constructed also for the dynamical CPA. In this case we found it more 
convenient to follow the t-matrix approach. 

The CCPA cluster t matrix is an operator in the cluster-spanned subspace @: 

t =  [I - G(V - Z)-'](V - 2) (18) 

where Vis the random part of the Hamiltonian (in the usual t-matrix approach notation). 
The CCPA equations are 

( f E q  Itlft,,) = 0. (19) 

The notation is consistent, with C = (i, j ,  k ,  . . .) the cluster sites and 0 = (0, 0, . . .) the 
ground-state configuration. Since we can also write t = G-' + [I - (V - 2)GIG-l and 
G-' is diagonal in a cardinality-labelled partition of the augmented space, (19) is also 
equivalent to 

All inverses are taken in the cluster-spanned subspaces. Note that unlike the icPA case 
the matrix V - I: is no longer tridiagonal in the cardinality-partitioned space. This is 
because, unlike the i c P A  case, there are more than one distinct configuration that have 
the same cardinality label. For example, in the ZCPA both the states I f { l , q + l )  and 
l f :o .q+l)  have the same cardinality q + 1, while all three of the states l f ; i 2 , q + Z ) ,  

and lfSo, ,+2)  have the same cardinality q + 2. Therefore the inversion in (20) 
is not straightforward, and must involve a recursion technique like that of Haydock et 
a1 (1972). Before the recursion reduces the (V - 2)G into a tridiagonal form, the tree- 
like recursive structure of the graph is not present and is the basis of the difficulty with 
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the graphical method. After inversion equation (20) reduces to a set of equations of the 
general form 

* ]  = I .  

These are the recurrence equations giving Zq  in terms of Zq+ and Zq+?. 
Note first that the functional form of 3 is independent of the cardinality label. We 

should also note that since (V - C)G is not symmetric in the cardinality label, we should 
use the non-symmetric version of the recursion technique (Haydock 1980). Moreover, 
if we use the argument of Paquet and Leroux-Hugon (1984) that X q + p  = 0 for p 2 p o ,  
then the set of equations (21) form a closed set of recurrence relations and may be used 
to obtain C = CO without difficulty. 

Once we have gone through the t-matrix approach, it is clear that if we use the non- 
symmetric recursion method of Haydock et a1 (1972) (which is essentially a change of 
basis) on the original chess-board pattern of figure 2(a ) ,  we may reduce it to a tree-like 
structure as shown in figure 2(b ) .  Such a tree will immediately yield the recurrence 
relations (21) in terms of the recursion coefficients A,, B ,  and BA, which are themselves 
functions of Z q ,  Cq + I ,  . . . and are produced during the application of recursion. All this 
may sound rather complicated. However, in most applications made by us and Paquet 
and Leroux-Hugon (1984), Z q  = 0 forp  2 4, the only exceptions being for very small w ,  
where we may use the static limit anyway. In such cases the recursion terminates after a 
few steps. 

2.5. Systems with both static and dynamic disorder 

Putting the averaging procedure for static and dynamic disorder on the same footing 
was motivated by the fact that we eventually wish to study systems that have both. Highly 
disordered metals and dirty alloys in contact with a thermal bath are some of the systems 
of interest. In these, both configuration averaging over structural and compositional 
disorder and averaging over various histories of the bath are necessary. The full con- 
figuration space is a direct product of the static configuration space and the dynamic one 

Q = QSt €3 a d y .  

In general the augmented space Hamiltonian connects Qgt and Qdy.. To see this 
clearly, we take the case of structural disorder, where the atomic potentials vary con- 
tinuously depending on the varying local environments. We note that the static disorder 
in the atomic potentials also leads to a disorder in both zo and A. The phonon frequencies 
involve the electronic energy levels via the dielectric function, while the electron- 
phonon coupling term also involves the derivative of the electron potential. Given a 
distribution of the electron potential in the absence of the phonon bath, a consistent 
calculation of the distribution of to and h is not an easy task, and is beyond the scope of 
this present work. We shall replace both zo and A by their average values. Though not 
explicitly stated, the work of Girvin and Jonsson (1980) also assumes this. Thus 

where a: creates an electron at the site r,, 6 :  creates a pseudo-boson related to dynamic 
disorder at r, and B i  creates a pseudo-boson related to static disorder at r,. 
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Figure 3. (a )  Part of the delinked graph for the ICPA with both static and dynamic disorder. 
( b )  Tree structure after further delinking. 

In the case in which we have alloy-like static disorder, the above approximation is 
not a good one, and we need not average to or A but use their two possible values tA,  tB 
and A A ,  A B  and the concentrations xA, xB of the constituents: 

where with A = t or 1 are the creation operators for pseudo-fermion excitations 
of the binary distribution above thegroundstate I t t t t t t . . . t t ). In the absence 
of short-range order we have M = xAPA + xBPA8 + (x~x~)~/*(TAA~ + TA,*),  while V, = 
VAA + VBB - 2vAB and V2 = VAB - VBB. 

Let us re-examine the t c P A  calculations. Figure 3(a) shows the relevant portions of 
the delinked graph in augmented space. This is related to the Hamiltonian (23), which 
is the easier to study at first. A glance at the graph shows that unlike the cases of pure 
static or dynamic disorder as in figure 1, this delinking in the case of correlated static and 
dynamic disorders does not lead to a tree-like structure and thus to the break-up of C = 
Cst + Cdy with each part having continued-fraction expressions. The square lattice form 
of the full C in allows us to obtain the self-energy by the recursion method. The 
continued-fraction coefficients of a square lattice can easily be generated in any reason- 
able computer with great facility down to several hundred steps, more than sufficient 
for convergence. 
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However, if we further decouple as in figure 3(b) ,  then the tree-like structure is 
reintroduced and we get 

h? 

Fq(z)  = 

It must be noted that this approximation goes beyond the ICPA. In all earlier work this 
kind of decoupling has been implicitly assumed. For example, if we go to the result of 
Girvin and Jonsson (1980), which is first-order in the dynamic part, we get for the self- 
energy an expression 

- z s t  - z d y ) *  

/AI2goo(z - Est - ihw) = IA12goo(~ - ihw) 

where the averaging over the static disorder is donefirst. This follows directly from (25 ) ,  
and the correlation between the static and dynamic disorder has been ignored. 

3. Remarks 

The methodology described above has the advantage that various types of disorder 
present in the Hamiltonian are treated on the same footing and their correlations may 
be taken into account. The augmented space technique and the graphical method of its 
solution ascertains that the Green functions obtained remain herglotz, provided we do 
not entertain further uncontrolled approximations. The technique allows us to go to 
cluster generalisations whenever these become necessary in specific situations. Further, 
the results reduce to established results in various limiting situations. This enhances our 
confidence in the proposed approximation as the generalisation of the coherent potential 
approximation. 

One of the motivations that led us to develop the formalism is to study the conductivity 
of Mooij alloys (random alloys with very high residual resistivity, due to near-localisation 
of electrons near the Fermi level). In particular, we wish to investigate whether coupling 
with the phonon bath alone could provide a mechanism for low-temperature minima in 
the resistivity. This will be reported in a subsequent communication. 
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